Categories: Technology

How do tardigrades defy death in extreme conditions?

Tardigrade, these small, graceful eight-legged invertebrates, are renowned for their incredible ability to survive extreme conditions. Known as “water bears,” these microorganisms can withstand extreme stresses such as high osmotic pressure, freezing temperatures, and complete dehydration. This resilience is mainly attributed to their ability to enter the nome state “Tune”where their metabolic activity is drastically reduced, allowing them to survive otherwise lethal conditions. Until now, the mechanisms triggering tune formation in tardigrades remained largely unknown. However, a recent study shed light on this mystery.

Central role of reactive oxygen species (ROS).

Extensive research has revealed that tons in tardigrades are regulated by structure Reactive Oxygen Species (ROS). These molecules, often considered harmful byproducts of cellular metabolism, actually play a critical role in cell signaling, especially under stressful conditions. Studies show that tons are formed in response to an increase in ROS in tardigrade cells, which initiates a series of biochemical reactions.

Reversible oxidation of cysteines: a key mechanism

The most surprising aspect of this invention is the role Reversible oxidation of cysteine, a type of amino acid found in proteins. When tardigrades are under stress, the cysteines in their cells undergo oxidation, changing their form and function. This change is reversible, allowing the tardigrades to quickly resume their normal functions once the stress is removed. This mechanism of oxidation and reduction of cysteines is therefore essential for their entry and exit from the tune.

Significant survival through different cryptobiotic states

Research has also explored the ability of tardigrades to survive in different cryptobiotic states, such as Osmobiosis and cryobiosis, in addition to chemobiosis. Studies have shown that tardigrades can be induced to reproducibly enter these states, and that they maintain high survival rates after exiting them. This opens the door for future research to further explore the survival mechanisms of tardigrades under various extreme conditions.

We now know a lot about tardigrades

This discovery marks a turning point in our understanding of cryptobiosis in tardigrades. By identifying reversible cysteine ​​oxidation as a key mechanism in regulating tardigrade survival, scientists have unlocked one of nature’s deepest mysteries. This not only deepens our knowledge of these fascinating organisms but also opens up promising prospects for biomedical and technological applications, drawing on the remarkable resilience of tardigrades.

Source de l'étude : https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295062

Source link

Admin

Share
Published by
Admin

Recent Posts

100 million degrees for 48 seconds: South Korea’s ‘artificial sun’ moves closer to nuclear revolution

This is a new record that scientists from the Korea Fusion Energy Institute (KFE) have…

6 months ago

The report offers solutions for insurers facing future growth in natural disasters

Damages associated with drought, floods, hail and other increasingly violent events are expected to increase…

6 months ago

You still have time to claim this exciting investigation

An estimated 9 million people in the United States are still waiting for their final…

6 months ago

IDF recognizes “serious mistake” in killing seven members of NGO World Central Kitchen

The death of seven humanitarian workers from the American NGO World Central Kitchen in an…

6 months ago

Fortnite Shop Apr 3, 2024 – Fortnite

Today, at one o'clock in the morning, Gamer updates it Boutique de Fortnite Through the…

6 months ago

Sharon Stone tried to make a Barbie movie in the 1990s

The Basic Instinct and Casino actress looks back at a time in Hollywood when adapting…

6 months ago