Eye imaging can detect signs of Parkinson’s disease up to 7 years before symptoms appear

WHO estimates that the prevalence of Parkinson’s disease has doubled in the last 25 years (Getty).

Parkinson’s disease It was first described in 1817 by the English physician James Parkinson and is a disorder of the nervous system that affects the brain structures responsible for control and coordination of movements and posture. The incidence is estimated at 21-25 cases per 100,000 inhabitants.

Now, a new study has shown that markers that indicate the presence of Parkinson’s disease in patients can be identified on average. seven years before the onset of the usual clinical symptoms of the diseaseas shown by the research team from University College London (UCL) and Moorfields Eye Hospital.

This is the first time such an analysis has shown these results in the years leading up to the diagnosis. Results made possible by the largest study to date retinal images. A study just published in Neurology, the medical journal of the American Academy of Neurology, identified markers in artificial intelligence (AI) eye scanners.

Using eye scan data revealed signs other neurodegenerative diseasessuch as Alzheimer’s disease, multiple sclerosis and, most recently, schizophrenia, in a new and exciting field of research called oculomics.

A recent study found differences in the INL (inner nuclear layer) of the retina in a pathological study of Parkinson’s disease patients compared to healthy individuals (Getty).

Eye scans and eye data were also able to reveal high blood pressure susceptibility; cardiovascular disease, including stroke; and diabetes. Doctors have long known that the eye can act as a window to the rest of the body, providing direct insight into many aspects of our health.

In the current study, the analysis of the AlzEye dataset was replicated using a larger database Biobank UK (healthy volunteers) who reproduced the results. Using these two large and powerful datasets allowed the team to identify these subtle markers despite Parkinson’s disease having a relatively low prevalence (0.1-0.2% of the population). Data set generation alsee this was made possible thanks to UNDERSTANDINGthe world’s largest database of retinal images and associated clinical data.

high resolution retinal imaging they are now a routine part of ophthalmic care, specifically a type of 3D scan known as optical coherence tomography (OCT), which is widely used in ophthalmic clinics and commercial opticians. In less than a minute, an OCT scan produces a cross-section of the retina (the back of the eye) in incredible detail, down to thousandths of a millimeter.

These images are extremely useful for monitoring eye health, but their value is much wider because retinal scans are the only non-invasive way to see the layers of cells under the surface of the skin.

In recent years, researchers have begun using computers to accurately analyze large numbers of OCT and other eye images in a fraction of the time it would take a human. Type usage AI now they can discover hidden information about the whole body from these images alone. Harnessing this new potential is what oculomics is all about.

Lead Author, Siegfried Wagner, a practicing physician at the UCL Institute of Ophthalmology and Moorfields Eye Hospital, who is also the principal investigator on several other AlzEye studies, said: “I remain amazed at what we can detect with eye scans. Although we are not yet ready to predict whether a person will develop Parkinson’s disease, we hope that this method will soon be able to become a pre-selection tool for people at risk of contracting the disease.”

Professor Alastair Denniston, Consultant Ophthalmologist at Birmingham University Hospitals, University of Birmingham Professor and Member of NIHR Moorfields BRC, said: “This work demonstrates the potential of eye data used by technologies to detect signs and changes too imperceptible to humans. We can now detect very early signs of Parkinson’s disease, opening up new treatment options.”

Previous studies using OCT scanning have already identified potential morphological abnormalities associated with Parkinson’s disease, but with inconsistencies in the evidence. Now this new study has confirmed previous reports of GCIPL (ganglion cell inner plexiform layer) is significantly thinner in patients with neurodegenerative disease.

In addition, reduced thickness was found to be associated with an increased risk of developing Parkinson’s disease, in addition to being associated with other factors or comorbidities.

The researchers say further research is needed to determine whether the progression of GCIPL atrophy is due to brain changes in Parkinson’s disease, or whether weight loss precedes GCIPL atrophy. Studying this may help explain the mechanism and determine if retinal imaging can help in the diagnosis, prognosis, and complex management of patients suffering from Parkinson’s disease.

Keep reading:

Parkinson’s disease: what are presence hallucinations and why do they indicate an increased risk of dementia?
Analysis of body movement and sleep quality can predict Parkinson’s disease
Parkinson’s disease: An intense exercise plan can help slow disease progression

Source link

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button